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Abstract 

Sparse representation of natural image is the fundamental problem of multi-scale geometric analysis, deep learning and K-SVD learning 

method. Traditional multi-scale geometric analysis is based on simple mathematical model which cannot express intricate natural 

images, and learning methods rely on prior knowledge. In this paper, a complex sparse representation mathematical model of natural 

images which have non-smooth area, non-smooth contours and intricate texture features is proposed. The model is established from 

the perspective of highly nonlinear approximation and according to the theories of wavelet, ridgelet, contourlet, and dictionaries such 

as wavelet dictionary and multi-scale ridgelet dictionary. The model can represent all natural images without any learning and priori 

knowledge. Simulation comparison experiments which established by a new multi-scale geometric dictionary show that this model 
greatly improves the sparse ratio and peak signal noise ratio and has the progressive optimal expression of intricate natural images. 
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1 Introduction 
 
Currently, wavelet dictionary is one of common used 
method of image sparse representation. Wavelet can 
provide the sparsest representation of the signal which has 
point singularity [1]. However, for the singularity of two-
dimensional image signal is mainly generated by edge and 
contour. Since the wavelet is the tensor product of two 
orthogonal wavelets, the number of selecting directions is 
three, which are the horizontal, vertical, diagonal 
directions. These directions cannot sparsely represent 
contour and edge information of image. Therefore, there 
are some limitations when wavelet processing a two-
dimensional image. To overcome the limitations and solve 
the sparse representation problem of high dimensional 
singularity complex natural images, multi-scale geometric 
analysis (MGA) was proposed. In recent years, common 
multi-scale geometric transformation methods include the 
ridgelet transform [2], the curvelet transform, the contoulet 
transform, the bandelet Transform and shearlet transform 
[3] and so on. Based on the simple mathematical model of 
multi-scale geometric analysis, a more complicated 
mathematical model is proposed in this paper. This model 
is suitable for sparsely representing two-dimensional 
natural image which has highly nonlinearity and complex 
textures regions. According to this model, an improved 
dictionary which is more superior than wavelet dictionary 
[4] is constructed, which can approximate complex two-
dimensional natural images more effective for overcoming 
the limitations of wavelet dictionary. Moreover, 
comparing with deep learning methods [5] and K-SVD [6] 
learning method, the method proposed in this paper can get 
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the optimal representation of intricate natural image 
without any prior knowledge. 
 
2 Experimental section 
 
2.1 NONLINEAR WAVELET APPROXIMATION OF 
THE IMAGE 
 
Whether exploring the theory or practical application, 
wavelet analysis is a powerful tool to study nonlinear 
approximation, which has the best approximation 
performance for some function classes (if any sector 
variogram class). Nonlinear wavelet approximation used 
in signal processing and image processing is the most 
common. 

Consider the decomposition [7] of the function 

)(RLf p  under the biorthogonal wavelet as follows:  

~

2 , (2 ) (2 ),k k k

k z j z

f f j j 
 

       (1) 

~

φ  [8] is a scaling function dual function, and satisfies: 

~

( ) ( ) ,jk

R

x j x k dx      (2) 

φ  is wavelet function, which is the corresponding 

scaling function φ . 
~

φ  is wavelet function, which is the 

corresponding scaling function 
~

φ . For ZkZj d  , , 
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dR  is represented by )(2   jI k  binary cube, and 

d]1,0[：  denoted as )2(：)(
2/1

jIx K
I 


 . D 

shows all the sides with a length of a K2  collection binary 

cube, then Equation (1) can be written as: 

~

( ) , ( ) , .II I I

I D

f C f C f f 


    (3) 

When D  and # n  , then 



i

IIas  , 

obviously, the aggregate of functions S constitutes a 

nonlinear space, denoted the space as 


n
 and then the 

function f in nonlinear n items wavelet space mectric 

approximation error [9,10] as follows: 

)(
s-finf：)(

RLpn pf  . (4) 

As the function 0,1),(  spRLf p , there are 

inequality of Jackson [11] and Bernstein [12] as following 

if the Wavelet coefficients DIIC )(  belong to l  space. 

( ( ))
( ) ,s

s

n p B L R
f cn f

 

   (5) 

)())(( RL

s

RLB ps fcnf 


. (6) 

So we can characterize the nonlinear wavelet 

approximation space: 

qs
dsdpdpd

q RLBRLRLA ,/
/ )))((),(()）（( 

  . (7) 

 

2.2 SIMPLE IMAGE MODEL 

 

Nonlinear approximation of functions in high-dimensional 

space dL ]1,0[2  can be used separable wavelet basis. 

Considering the two-dimensional (still images), wavelet is 
qC  in 2 [0,1]L  and possesses q vanishing moments when  

1

, , 1 , 2(x ) (x ) ,j n j n j n    2

, , 1 , 2(x ) (x ) ,j n j n j n  
 

3

, , 1 , 2(x ) (x )j n j n j n   , 

then getting as follows: 

2 2

2

2 [0,1] , 2 [0,1] 1 3
({ ,n} ) ({ ,n} )J J

l

J jn j J n l
B  

    
  . (8) 

It forms a standard set of orthogonal groups in 
2 2[0,1]L .If the function 2 2

1 2(x ,x ) [0,1]f L  is regular 

consistent, that is f C , the vanishing moments of wave 

function p  , then 2[M] || ||W

n Mf f CM     . 

Because there is no other group, 
2[M] || ||n Mf f CM     , so this non-linear 

approximation approach is optimal. In fact, most natural 

objects are smooth and have smooth edges, thereby 

establish a simple image model: 

(s,C)

(a,A) (a,A)F F 



 , (9) 

where: 

2(a,A) { [0,1] \ [0,1], || || }aC
F f f A     . (10) 

2(s,C) { :[0,1] [1/10,9 /10] , || || C}sC
     . (11) 

  

FIGURE 1 Simple image model with smooth edges 

Equation (9) represents a class of two-dimensional 

functions which has a singularity of curves and straight 

lines. In addition to the curve (s,C)  is in the two-

dimensional plane, it is smooth C , and the singular curve 

(s,C)  itself is smooth 
sC . As shown in Figure 1, the 

regions A and B are smooth 
aC , singular curve is  , two 

order smoothing. Wavelet Transform Based on this simple 

image model for bounded variation functions and 

piecewise regular function approximation error can only 

reach 1M   attenuation level is not optimal. Wavelet basis 

functions from the dictionary are a collection of wavelet 

transform in accordance with the rules to select a certain 

linear combination of basic functions to represent or 

approximate the signal. Wavelet dictionary definition is: 

In the space of d i

id R  , if the N atoms are from the same 

wavelet function, :d N

fD R d N   is composed by a 

known dictionary atoms wavelet function fD , these atoms 

satisfy the maximum separation from the dimensional 

space, and has a good sparse approximation performance. 

Assuming that each atom in the dictionary 

:d N

fD R d N  , the mathematical form is ( , )if t  , 

where  
1

N

i i



   is a set of vectors. These vectors contain 

a number of functions that represent each wavelet function 

atoms, whereby an image can be seen that the wavelet is 

still not optimal Dictionary in order to solve the above 

problem, we need to create more complex and more 

comprehensive image model basis functions dictionary. 

 

2.3 IMAGE MODEL COMPLEX FUNCTIONS 

 

Methods currently solving image representation are based 

on a class of two-dimensional function with curve 
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singularity (including the line). This function apart from 

the curve in the two-dimensional plane which smooth 
aC

and singular curve itself is smooth 
sC .It is a simple image 

model consists of bounded variation and amplitude 

bounded combine. Two-dimensional functions (such as 

natural images special area) varied, both "point 

singularity" there "line singularity"; both smooth areas, 

there are also non-smooth region; both smooth contours, 

but also non-smooth contours both non-texture area, but 

also the texture region [13] lines. At present, only a simple 

mathematical model to deal effectively with piecewise 

smooth function classes, but for complex function types 

can’t do it. 

 

2.4 SINGULAR COMPLEX NATURAL IMAGES 

REPRESENTED 

 

Taking into account the effective treatment of high-

dimensional (two-dimensional) complex functions f, the 

two dimensional singularity complex natural image has the 

synthesis expansion Affine Systems (Equation (12)), if 

basis functions )(x  for any )( 22 RLf   and scale j, l, k 

have the form of 

  22

,,

,,, ff
klj

klj   . 

 )(det)()(
2/

,, kxMNMx jlj

kljMN   . (12) 

Here )( 22 RL , the matrix 
jM  is associated with scale 

transformation and maintaining constant area associated 

with geometric transformation, thus constitutes a Parseval 

frame. The frame can make up the basic elements of 

various scales, positions and directions as wavelets. The 

Affine Systems combine with multi-scale geometric 

analysis can locate the discontinuous curve of function and 

differentiate their directions. This combination has the 

characteristics as follow: (1) good localization 

characteristics; (2) strong direction sensitivity; (3) spatial 

localization. For one-dimensional signal, the singularity of 

the image depends on singular point. The continuous 

wavelet transform  tf ftaW ,),(  of one-

dimensional function f can be localized singularity and 

))(( 11 txaat    , that is the function ),( taW f  can 

quickly tends to zero when a tends to zero and t locates 

around the singular point or ),( taW f  slowly tends to zero 

when t is singular point. For two-dimensional signal, the 

singularity of the image depends on the singular point and 

singular lines. We can establish a two-dimensional 

transform  astf ftsaL ,),,(  as one-dimensional 

signal, and describe the speed of the declined amplitude of 

the function ),,( tsaL f  along with the reducing scale 

parameter a as: 

   0,,),,( RratsaLa r
f

r
 and sign as 

r
f atsaL ~),,( .There is a relation 

4/3~),,( atsaL f  for 

the function )()( 0xxxf   with the singular point if 

t=0. And that exists 
4/1~),,( atsaL f  for the function 

)()( 2pxxxf   with the singular line if 21 ptt  and

PS  . We set up a circular area 

}1,),{( 2
2

2
1

2
21  xxRxxD  and the singular 

characteristic function of the circular area D contains a 

circular curve. There will be 
4/3~),,( atsaL f  if 

),( 21 ttt   meets 12
2

2
1  tt  and parameters S satisfies 

0,/ 112  ttts . So that we can locate the position of the 

singular point and automatically track the singular curve. 

Then this way can solve the curve singularity problem 

which traditional wavelet transform can’t resolve. 

 

2.5 COMPLEX NATURAL IMAGES REGULAR 

REPRESENTATION 

 

Based on the representation of the image edge describe the 

edge geometric regularity which is not critical and difficult 

to portray a better image. Pennec and Mallat [14] introduce 

the flow to characterize the geometric properties of the 

image. They use the direction vector to represent the local 

image geometry changing direction. These vectors give the 

local direction in the regular changes of the image. We can 

improve the performance of image transformation 

approximation method in the image processing tasks if we 

are able to know the geometric regularity of the images in 

advance and to fully utilize them. Pennec and Mall firstly 

define geometric flow vectors which can characterize the 

partial regular direction of the image, and then the 

supported interval S of the image are dyadic split 

iiUS  .Each split interval contains only one contour 

line (edge) when the mesh is sufficiently thin. The 

changing of image gray value are consistent regular in the 

local region i  where do not contain all of the contour 

line. Therefore, we don’t need to define the direction of the 

geometric vector lines in these areas. We calculate the 

vector line of the vector field in the area i  according to 

the local geometry of regular direction and under the 

constraints of the global optimum. Then the interval which 

is defined in i  performs wavelets transformation along 

vector line in order to take full advantage of the local 

geometry of the image itself regularity. As a result it can 

constitute an orthonormal basis set in the split region i  

and )(2 L : 




1 2 1 2

1 2 1 2

, 1 2 , 2 , 1 2 , 2

, 1 2 , 2 ,

( ( )) ( ), ( ( )) ( ),

( ( )) ( )} , ,

j m l m j m l m

i

j m l m j l j m m

x c x x x c x x

x c x x j l Z k Z

   

    

 

  
 (13) 
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1,mj  is scaling function and 
2,ml  is wavelet function. 

We can prove that the coefficients generated on the fine-

scale is much less than bending wavelet coefficients in this 

way, if ))(,( 121 xcxxf   is the function C  in   for all 

fixed 
1x  and 

2x . Through the above comparison, this 

image processing method has the following 

characteristics: (1) A good multi-scale nature can ensure 

continuous refinement image; (2) Frequency localization 

properties, we can simultaneously achieve precise 

positioning of time domain and frequency domain; (3) 

multi-directional and anisotropic make up for the 

shortcomings of wavelet function; (4) A high order of 

vanishing moments direction that we can get more sparse 

representation; (5) A good adaptability, obtaining the 

required optimal basis functions adaptively. So we can get 

the conclusion that this method can adaptively track 

geometric regularity images, obtain more sparse 

representation and improves the approximation of 

complex properties of natural images. 

The above analysis results can construct a more 

efficient natural images based on multi-scale highly 

nonlinear function approximation with complex features 

sparse representation model: 

 



1 2 1 2

1 2 1 2

/2

, ,

, 1 2 , 2 , 1 2 , 2

, 1 2 , 2 ,

( ) ( ) det ( ) ;

( ( )) ( ), ( ( )) ( ),

( ( )) ( )} , ,

j l j

MN j l k

j m l m j m l m

i

j m l m j l j m m

x M N M x k

x c x x x c x x

x c x x j l Z k Z

  

   

    

   

 

  

 (14) 

This model not only can detect all the singular points, 

satisfy with the image processing method of simple model 

based on wavelet transform, ridgelet transform and 

contourlet transform and so on. This model can adaptively 

track the direction of the singular curve, and can accurately 

describe the singularity characteristic function with the 

scale parameter changing. Not only can the model achieve 

the classic description of multi-scale analysis of high-

dimensional signal geometric singularity, but also can 

track the complex adaptive nature of the image geometric 

regularity, and overcome the wavelet transform (simple 

image model) in dealing with the limitations of two-

dimensional images showed. 

 

3 Results and discussion 

 

3.1 THE NATURAL REALIZATION OF THE 

COMPLEX IMAGE REPRESENTATION 

 

Minh. N. Do and Martin Vetterli [15] proposed a two-

dimensional representation method of the image - 

contoulet transform [16] which is a multi-resolution, 

localized, direction method. Contourlet transform actually 

spin off multi-scale analysis and direction analysis. Firstly, 

the multi-scale decomposition of image capture the 

singular point by LP transform, and then the directional 

filter (DFB) will be distributed point singular in the same 

direction into a coefficient. This approach is essentially 

similar to the segment-based structure to approximate the 

original image. The transformation is affixed conversion 

and can make the image processing tasks realize more 

simple and easier. Contourlet transform also has a wealth 

basis functions which can contain any integer power of a 

direction base function, thereby contoulet transform 

[17, 18] can solve linear singular and singular curves and 

make them both close to optimal representation. This 

outline wavelet transform has better image processing 

effects than the traditional wavelet, multi-scale ridge 

wave. However, the contourlet approximation does not 

have the best performance when the edges of the most 

complex natural images are not C2 critical. And capturing 

the coefficients needs larger work result in the effect 

unsatisfied. Thus we establish the function dictionary by a 

variety of multi-scale structure of the base based on the 

model (14) of complex natural images to represent the two-

dimensional natural images more comprehensive and 

optimize a single multi-scale function, wavelet function 

dictionary and ridgelet function dictionaries and so on. 

 

3.2 ESTABLISH DICTIONARY SIMULATION 

EXPERIMENT AND RESULTS ANALYSIS 

 

The dictionary in this paper is constructed by using an 

adjustable manner dictionary [19] chosen method. This 

method is suitable to construct the known basis functions 

dictionary and the basis function has a good optional. We 

have introduced the known basis function of the wavelet, 

contourlet and strip wavelet in the dictionary. A more 

complex mixture of more comprehensive dictionary is 

constructed based on a complex structure improved of the 

natural image model. The dictionary uses optimal 

matching search method for signal sparse representation - 

orthogonal matching algorithm (OMP). The new 

dictionary and the traditional dictionary constructed by 

simple model were contrasted the effect of complex 

natural images by MATLAB image simulation. The paper 

selected four 512×512×8 standard gray image who are 

goldhill, boats, cameraman, baboon and the enlarged 

image of a portion. We take the most meaningful 2.5% 

coefficient; respectively wavelet function dictionary and 

the new dictionary approximate the natural images of 

complex nonlinear. Then we obtain the simulation and 

experimental results of the sparse image ratio (SR) and 

peak signal to noise ratio (PSNR). Nonlinear 

approximation result shows as Figure 2, Figure 3, Figure 4 

and the sparse ratio and peak signal to noise ratio as 

Table 1. 

TABLE 1 Sparse ratio and signal to noise of nonlinear approximation 

Images 
Wavelet dictionary 

SR/PSNR 

New dictionary 

SR/PSNR 

goldhill 5.45/46.33 7.93/47.62 
boats 5.45/44.60 7.93/46.04 

cameraman 6.40/46.60 7.23/48.13 

baboon 6.40/45.05 7.72/46.70 
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a) b) 

  
c) d) 

FIGURE 2 Standard image and enlarge portions 

 

  
a) b) 

  
c) d) 

FIGURE 4 Transformed dictionary simulation diagram and enlarge 

portion 

 

  
a) b) 

  
c) d) 

FIGURE 3 The simulation map of wavelet dictionary and enlarged 

portion 

 

According to depict complex natural images by 

MATLAB simulation and the comparison of the sparse and 

peak signal to noise ratio show that the improved 

dictionary based on the complex natural images model has 

more advantageous than the traditional dictionary in 

solving curve singular and image regularity, and 

approximation results are better in dealing with non-

smooth contour, non-smooth area and text region of 

complex natural images. This can achieve optimal sparse 

representation progressive. 

 

4 Conclusion 

 

This paper establishes a multi-scale sparse representation 

model based on highly nonlinear approximation. This 

model aims at the intricate natural images which have 

point and line singularity, smooth and non-smooth regions, 

smooth and non-smooth contours, texture and non-texture 

areas. According to this model, a new hybrid dictionary is 

also constructed. Simulation experiments show that this 

complex natural image model can obtain the optimal 

sparse representation of the complicated two-dimensional 

natural images which have non-smooth regions and 

contour and texture areas. Meanwhile, this method can 

improve the performance of non-linear approximation of 

the images and confirmed that the model of complex 

function image has more superiority than the traditional 

model of a simple image. 
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